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Ester via Enantiospecific Reduction of Sodium Fluoropyruvate Catalyzed by Rabbit Muscle
L-Lactate Dehydrogenase (L-LDH).
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Abstract: In the presemt work a simple laboratory procedure for the synthesis of (R)-3-Fluorolactic Methyl Ester(1) is
described. A coupled enzymatic system formed by rabbit muscle 1-lactate dehydrogenase (L-LDH), horse liver alcohol
dehydrogenase (HLADH), fluoropyruvic acid sodium salt, NAD" and cis-1,2-bis(hydroxymethyl)cyclohexane were found to
be very effective for production of (1) in 80% overall yield and ee > 99%. Copyright © 1996 Elsevier Science Ltd

The enzymatic approach to chiral building blocks is a very important synthetic methodology due to
the peculiar characteristics of the biological catalysts used for these purposes,’ especially their enantio-,
regio- and quimiospecificities. The enzymatic systems also show great efficiency under mild reaction
conditions and are considered to be safe in terms of solvent disposal. The objective of the present work
was the construction of a chiral synthetic equivalent® of glycerol. Three carbon chiral blocks shows great
chemical versatility, as has been shown with other three carbon equivalents ( i. e. (R)- and (S)-
glyceraldehyde) *

The choice of (R)-3-fluorolactic methyl ester(1) as the target product of our process was based on
its potential use as a precursor**® for (S)-propranolol(2),** (S)-moprolol(3), (S)-3-hydroxypirrolidin-2-
one(4), (S)-GABOB(S), and (S)-camitine(6). Synthesis of these compounds is presently the goal of several
groups.*™ Since the use of L-LDH for production of 4 was recently reported,’ and because we believe that
transformation of 1 to 4 could be easily accomplished we have decided to disclose our results.
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Although fluoroketones are believed to act as enzyme inhibitors,® several examples of enzymatic
reactions of fluorocompounds have been described in the literature. ™* As a very closely related example,
the enzymatic production of 1 using fluorocompounds as starting material can be mentioned. ™ The kinetic
resolution of diol 7 by horse liver alcohol dehydrogenase (HLADH), followed by oxidation of the resulting
hydroxyaldehyde catalyzed by aldehyde dehydrogenase (AldDH), with the use of glutamate dehydrogenase
(GluDH) as a NADH recycling enzyme yielded the desired (R)-3-fluoriactic acid. Since this process
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presents a priori the inconvenience that the theoretical yield can only be 50%, rabbit muscle L-lactate
dehydrogenase (L-LDH, EC 1.1.1.27) was chosen as an enzyme able to produce 1 from 8, in 100% yield.
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Kim and Whitesides® showed that 8 is a fairly good substrate for this enzyme (k.e/Km is about 22%
of that determined for the natural substrate, pyruvate). These authors with their classical screening work
determined the kinetic parameters (k. and K,,) of L-LDH from different sources for several a-ketoacids
and showed that this enzyme is very useful in preparative scale enantiospecific reductions of some pyruvic
acid derivatives. Although in this work, 3-halopyruvic acids were only used as substrates for estimation of
the kinetic parameters, Hirschbein and Whitesides® showed earlier the use of rabbit muscle L-LDH in the
multigram scale synthesis of (R)-3-chlorolactic acid with ee > 97%.

NADH is a very expensive reagent. To be used in stoichiometric concentrations with the prochiral
substrate of the dehydrogenase, this coenzyme must be used in catalytic amounts to permit the economical
viability of the enzymatic process. To achieve a good reaction condition, a convenient method to recycle
the coenzyme is of fundamental importance. Therefore, several methods to recycle the coenzyme are
described in the literature. *** For the enantioselective reduction of pyruvic acid derivatives catalyzed by L-
LDH, Kim and Whitesides® and Hirschbein and Whitesides,” used a formate dehydrogenase(FDH)/ formate
system to accomplish this task. Since FDH is an expensive enzyme, and also because HLADH very
efficiently catalyzes the oxidation of several monocyclic mesodiols in the presence of NAD" leading to the
production of the respective chiral lactones,'” we decided to test this system to recycle NADH. We then
compared the mesodiol/ HLADH system with the ethanol/ HLADH system due to the simplicity and lower
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cost of the latter.
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The first system studied involved reduction of pyruvic acid sodium salt coupled to the oxidation of
ethanol to acetaldehyde,'"* in closed and open vessels, obtaining 93% and 100% conversion, respectively,
after 8h of reaction. The better performance observed in open vessels was attributed to the partial
evaporation of acetaldehyde, a well known mixed-type inhibitor of HLADH with respect to ethanol .'* When
cis-1,2-bis(hydroxymethyl)cyclohexane (BHMC) (9) was used, 100% conversion was achieved in 3h of
reaction under the same experimental conditions.'*® This was not an unexpected result since it has been
shown that the transformation of 9 into 11 presents better thermodynamic (AG®’) and kinetic (K / K3)
properties than the ethanol/ acetaldehyde reaction.'**® Furthermore, this system allows the recycling of two
equivalents of NAD" for each mol of BHMC (9) oxidized, thereby providing additional driving force to the
desired reaction.



Homochiral (R)-3-fluorolactic acid methyl ester
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Once defined as an efficient system to recycle NADH using sodium pyruvate as a model substrate,
the enzymatic reduction of 3-fluoropyruvic acid sodium salt (3.25 mmols) catalyzed by L-LDH was
undertaken, and after 9 h of reaction 100 % conversion was attained. Convenient work up of the reaction
medium, ' followed by CH,N, methylation furnished 1 in 80% yield and ee > 99%." Since the reduction
of pyruvic acid derivatives catalyzed by L-LDH occurs enantiospecifically, the absolute configuration of
the a-C must be the same for all the products.®’ Based on this fact, the configuration of 1 was considered
to be (R).

This report shows that we have developed a very efficient enzymatic system to produce (R)-3-
fluorolactic acid methyl ester, which constitutes a very useful chiral building block with several applications
in organic synthesis. The process disclosed here can be followed by any synthetic laboratory, increasing the
number of suitable chiral blocks available to synthetic chemists.
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